从“傻白甜”到“杠精” AI有了认知智能萌芽(2)
2019-01-07 11:20科技日报浏览:次
数据融合包括拥有海量数据和实现高效融合两方面。
苏萌表示,数据融合指的是打破业务系统的烟囱融合海量的多元异构的数据,它既是一次企业内外部数据的融合,也是大小数据的融合,同时也是历史数据和实时数据的融合,只有数据融合了之后,才能洞见真相避免偏见,才能明智决策避免武断。
“知识图谱是我们让机器去了解、认识人类世界的核心,它把我们的知识构建成网状的知识结构,再通过人机交互直接输出。”苏萌进一步解释,数据融合意味着知识需要不断更新,但在更新一个知识点的时候往往需要更新整个知识系统,操作非常繁琐。
“出版行业或者媒体,甚至公安行业,所涉及的知识都需要实时动态理解,某一个知识不是固定不变的,所以知识图谱未来的发展方向是动态知识图谱。” 苏萌解释,这个世界由很多的东西构成,比如人、事、地,这些可以理解为本体,本体发生变化或者本体间的关系发生变化后,动态知识图谱能够迅速自动重构,高效地实现对一个行业的知识图谱的构建。
攻坚在路上,来自小数据的挑战
新的领域、没有海量样本、训练速度不够,是不是每遇到一个特殊场景,都要重新建模,输入大量的样本让机器重新学习一次呢?条件并不允许。
“很多客户的实际应用场景是数据量不够甚至是比较少的,在这种情况下我们结合迁移学习技术,解决了小样本的模型训练问题,标注量只有以往的10%。”百分点首席算法科学家苏海波说。
从小数据中获得学习能力,也是人工智能走向认知智能的一个重要部分。人工智能专家经常用猫举例:小孩子认得猫只要指给他看一两次就够了,AI却需要成百上千张图片,才能掌握猫的特征。
为此,人工智能科学家尝试结合迁移学习开发一系列算法,节约人工标注样本的时间,让模型在少量的标注数据上,也能取得好的效果,可以理解为赋予AI“举一反三”的能力。“例如像电商评论情感分类这样一个任务,用传统的深度学习模型需要数万条数据才能达到85%左右的效果,但是如果采用深度迁移学习技术,数百条数据就能达到同样的效果。”苏海波说,我们判断认知智能未来会迎来黄金十年的发展,为此百分点成立了认知智能实验室。除了深度迁移学习技术,实验室还会重点研发多语种自然语言处理技术,帮助认知智能实现跨种族、国际化。
“未来我们会与各大高校和研究机构开展合作,建立联合实验室,共同探索更多前沿的认知智能技术,包括各个重点行业的知识图谱构建、自动问答等等。基于这些技术,实验室会研发出更多行业落地的应用产品,为客户创造价值,用认知智能推动社会进步。”苏海波说。(记者 张佳星)(责任编辑:刘晓方)
(本网站所发布文章只作为信息传播使用,不代表本网观点)
法务网咨询平台(长按图片识别小程序)